RRT is a searching algorithm  applied by building a space filling tree  from samples drawn randomly of high-dimensional search spaces . import networkx as nx import numpy as np from sklearn.neighbors import KDTree class RRT: def __init__(self,x_init): self.tree = nx.DiGraph() self.tree.add_node(x_init) def nearest_neighbour(x_rand,rrr): dist=1000 x_rand = np.array(x_rand) for node inContinue Reading

Start by building a very simple network: import numpy as np class NeuralNetwork: def __init__(self, x,y): self.input = x self.y = y self.Weights1 = np.random.randn(self.input.shape[1],5) self.Weights2 = np.random.randn(5,1) self.output = np.zeros(self.y.shape) def sigmoid_z(self,x): #create a sigmoid function z = 1/(1 + np.exp(-x)) return z def sigmoid_z_derivative(self,x): return self.sigmoid_z(x)*(1-self.sigmoid_z(x)) def forwardpropogation(self):Continue Reading