Start by building a very simple network:

import numpy as np
class NeuralNetwork:
def __init__(self, x,y):
    self.input = x
    self.y = y
    self.Weights1 = np.random.randn(self.input.shape[1],5)
    self.Weights2 = np.random.randn(5,1)
    self.output = np.zeros(self.y.shape)

def sigmoid_z(self,x):
    #create a sigmoid function 
    z = 1/(1 + np.exp(-x)) 
    return z

def sigmoid_z_derivative(self,x):
        return self.sigmoid_z(x)*(1-self.sigmoid_z(x))

def forwardpropogation(self):

    self.layer1 = self.sigmoid_z(np.dot(self.input,self.Weights1) )
    self.output = self.sigmoid_z(np.dot(self.layer1,self.Weights2) )

def predict(self,x):
    self.input = x
    self.forwardpropogation()
    return nn.output
 
 #optimization stage
    def backpropogation(self):
        #Derivative of cost function with respect to w2:
        #is the product of the chain derivatives that combine them:
        #self.output = y_hat = a2 = sigmoid(z2), z2 = a1*w2
        #a1 = sigmoid(z1), z1 = x*w1
        
        #derivative of the cost function with respect to the output of the network y_hat
        dcost = (self.y - self.output) 
        #derivative of activation function
        dz2 = self.sigmoid_z_derivative(np.dot(self.layer1,self.Weights2))
        #derivative of previous layer output functionn
        da2 =self.layer1.T
        #derivative of cost with respect to w2 is therefore:
        d_weights2 = np.dot(da2, dcost*dz2)
        
        #derivative of activation function
        dz1 = self.sigmoid_z_derivative(np.dot(self.input,self.Weights1))
        
        #derivative of input layer output functionn
        da1 = self.input.T
        #Derivative of cost function with respect to w1:
        d_weights1 = np.dot(da1,np.dot(dcost * dz2, self.Weights2.T) * dz1)
         
        self.Weights1 -= d_weights1
        self.Weights2 -= d_weights2
if __name__ == "__main__":
X = np.array([[1,1,0,1],
[1,0,1,1],
[1,0,0,1],
[1,1,1,1]])
y = np.array([[0],[0],[1],[1]])
nn = NeuralNetwork(X,y)
for i in range(1500):
    nn.forwardpropogation()
    nn.backpropogation()


print(nn.predict([0,1,1,0]))

same network can be easily done in keras:

from keras.models import Sequential
from keras.layers import Dense
from keras import optimizers
import numpy as np
np.random.seed(0)
model = Sequential()

model.add(Dense(units=5, activation='sigmoid', input_dim=4))

model.add(Dense(units=1, activation='sigmoid'))
sgd = optimizers.SGD(lr=1)
model.compile(loss='mean_squared_error', optimizer=sgd)
X = np.array([[1,1,0,1],
     [1,0,1,1],
     [1,0,0,1],
     [1,1,1,1]])
y = np.array([[0],[1],[1],[0]])
model.fit(X, y, epochs=1500, verbose=False)
test_X = np.array([[0,1,1,0]])
print(model.predict(test_X))

or tensorflow:

import tensorflow.compat.v1 as tf
 import numpy as np
 import matplotlib.pyplot as plt
 np.random.seed(10)
 tf.disable_eager_execution()
 Parameters
 learning_rate = 1
 training_epochs = 1500
 display_step = 50
 train_X = np.array([[1,1,0,1],
     [1,0,1,1],
     [1,0,0,1],
     [1,1,1,1]])
 train_Y = np.array([[0],[1],[1],[0]])
 n_samples = train_X.shape[0]  
 X = tf.placeholder(tf.float32,shape=[None,4])
 Y = tf.placeholder(tf.float32,shape=[None,1])
 dense_1 = tf.layers.dense(X, units=5)
 out_1 =tf.nn.sigmoid(dense_1)
 dense_2 = tf.layers.dense(out_1,units=1)
 pred =tf.nn.sigmoid(dense_2)
 Mean squared error
 cost = (tf.pow(pred-Y, 2))/(2*n_samples)
 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
 init = tf.global_variables_initializer()
 with tf.Session() as sess:
 sess.run(init) for epoch in range(training_epochs):     for (x, y) in zip(train_X, train_Y):         sess.run(optimizer, feed_dict={X: [x], Y: [y]}) test_X = np.array([0,1,1,0]) prediction = sess.run(pred,feed_dict={X: [test_X]})    print("prediction",prediction)

or pytorch or any other nn network for that matter such as lua , caffe , cntk etc..

import torch

import torch.nn as nn

import numpy as np
np.random.seed(10)

class NeuralNetwork(nn.Module):

    def init(self, ):

        super(NeuralNetwork, self).init()

        self.inputSize = 4

        self.outputSize = 1

        self.hiddenSize = 5

        self.W1 = torch.randn(self.inputSize, self.hiddenSize)

        self.W2 = torch.randn(self.hiddenSize, self.outputSize)
def forward(self, X):
    self.z1 = torch.matmul(X, self.W1)  
    self.z2 = self.sigmoid(self.z1)  
    self.z3 = torch.matmul(self.z2, self.W2)
    o = self.sigmoid(self.z3)
    return o

def sigmoid(self, s):
    return 1 / (1 + torch.exp(-s))

def sigmoid_derivative(self, z):
    # derivative of sigmoid
    return self.sigmoid(z) * (1 - self.sigmoid(z))

def backward(self, X, y, o):
    self.o_error = y - o 
    self.o_delta = self.o_error * self.sigmoid_derivative(self.z3)  
    self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2))
    self.z2_delta = self.z2_error * self.sigmoid_derivative(self.z1)
    self.W1 += torch.matmul(torch.t(X), self.z2_delta)
    self.W2 += torch.matmul(torch.t(self.z2), self.o_delta)

def train(self, X, y):
    o = self.forward(X)
    self.backward(X, y, o)

def predict(self,xPredicted):
    print ("Output: \n" + str(self.forward(xPredicted)))
if __name__ == "__main__":
X = torch.tensor(np.array([[1,1,0,1],
[1,0,1,1],
[1,0,0,1],
[1,1,1,1]]),dtype=torch.float)
y = torch.tensor(np.array([[0],[0],[1],[1]]),dtype=torch.float)
nn = NeuralNetwork()
for i in range(1500):
    nn.train(X,y)
test_X = torch.tensor(np.array([0,1,1,0]),dtype=torch.float)
nn.predict(test_X)

 

Comments are closed, but trackbacks and pingbacks are open.